[EZ-Cytox] Chemoresistance in the Human Triple-Negative Breast Cancer Cell Line MDA-MB-231 Induced by Doxorubic…
-
4666회 연결
본문
Chemoresistance is one of the major causes of therapeutic failure in breast cancer patients. In this study, the mechanism of chemoresistance in human triple-negative breast cancer (TNBC) cells (MDA-MB-231) induced by doxorubicin (DOX) gradient was investigated. These DOX-resistant cells showed higher drug efflux rate, increased anchorage-independent growth when cultured in suspension, and increased tumor-forming ability in nude mice, compared to the wild-type MDA-MB-231 cells. RNA sequencing analysis showed an increase in the expression of genes involved in membrane transport, antiapoptosis, and histone regulation. Kaplan-Meier plot analysis of TNBC patients who underwent preoperative chemotherapy showed that the relapse free survival (RFS) of patients with high HIST1H2BK (histone cluster 1 H2B family member k) expression was significantly lower than that of patients with low HIST1H2BK expression. Quantitative real-time PCR confirmed that the level of HIST1H2BK expression was increased in resistant cells. The cytotoxicity analysis showed that the DOX resistance of resistant cells was reduced by treatment with a histone deacetylase (HDAC) inhibitor. Our results suggest that, in DOX-resistant cells, HIST1H2BK expression can be rapidly induced by the high expression of genes involved in membrane transport, antiapoptosis, and histone regulation. In conclusion, chemoresistance in MDA-MB-231 cells can occur in a relatively short period by DOX gradient via this previously known mechanism of resistance, and DOX resistance is dependent on the specificity of resistant cells to HDAC.
댓글목록1
김상진님의 댓글